-
尼康顯微鏡,什么是共振掃描激光共聚焦顯微鏡?
激光掃描共聚焦顯微鏡已被證明是對(duì)固定和染色的細(xì)胞,組織中一個(gè)有用的工具,甚至整個(gè)生物體的光來源于區(qū)域從焦平面將消除高對(duì)比度。熒光蛋白在活細(xì)胞成像,然而越來越多的應(yīng)用,現(xiàn)在需要顯微鏡的成像速度為毫秒級(jí)解開在許多生物過程中發(fā)生的復(fù)雜的動(dòng)力學(xué)。不幸的是,傳統(tǒng)的激光掃描共聚焦顯微鏡由電流計(jì)鏡有限的采集速度,這是一個(gè)線性鋸齒控制信號(hào)以每像素幾微秒的速度驅(qū)動(dòng)。這意味著掃描速率范圍從500毫秒到2秒,取決于圖像
2020-09-04
-
奧林巴斯顯微鏡成像,在數(shù)字圖像處理的基本概念
廣泛可用性,成本相對(duì)較低的個(gè)人電腦在數(shù)字圖像處理活動(dòng)的科學(xué)家和一般的消費(fèi)人群已經(jīng)預(yù)示著一場(chǎng)革命。?耦合到模擬圖像數(shù)字化(主要是照片),由廉價(jià)的掃描儀和圖像采集與電子傳感器(主要是雖然電荷耦合器件或CCD?),用戶友好的圖像編輯軟件套件已經(jīng)在急劇增加的能力,以提高功能,提取信息,并輕松地修改屬性的數(shù)字圖像。數(shù)字圖像處理方式,以矩陣的形式的整數(shù),而不是經(jīng)典的暗房操作或過濾的隨時(shí)間變化的電壓,所需的模擬
2020-09-04
-
奧林巴斯顯微鏡成像,什么是反卷積?
?反卷積進(jìn)行大量計(jì)算的圖像處理技術(shù),正被越來越多地利用改善在顯微鏡拍攝的數(shù)字圖像的對(duì)比度和分辨率。?根據(jù)一套旨在消除或扭轉(zhuǎn)引起的物鏡的孔徑有限的顯微鏡圖像中存在的模糊的方法,這些方法的基礎(chǔ)是。幾乎任何數(shù)字熒光顯微鏡獲得的圖像可以被反卷積,以及一些新的應(yīng)用程序正在開發(fā),應(yīng)用反卷積技術(shù)透射光下的各種采集圖像對(duì)比度增強(qiáng)策略。?其中最合適的改進(jìn)的主體,通過反卷積是從一系列的光學(xué)部分構(gòu)成的三維蒙太奇。圍繞收
2020-09-04
-
尼康顯微鏡,熒光共振能量轉(zhuǎn)移(FRET)顯微鏡與熒光蛋白的基本原理
在活細(xì)胞中,動(dòng)態(tài)的蛋白質(zhì)之間的相互作用被認(rèn)為是發(fā)揮了關(guān)鍵作用,調(diào)節(jié)許多信號(hào)轉(zhuǎn)導(dǎo)通路,以及廣泛的其他關(guān)鍵流程。 在過去,經(jīng)典的生物化學(xué)方法,闡明了這種相互作用的機(jī)制是司空見慣,但是弱的或短暫的相互作用,可能會(huì)發(fā)生細(xì)胞內(nèi)的天然環(huán)境是這些技術(shù)通常是透明的。 例如,合作一直懷疑蛋白本地化合作伙伴使用固定細(xì)胞免疫熒光顯微鏡檢查相互作用在原地 ,并已提交了大量的文獻(xiàn)報(bào)道基于這種技術(shù)的常用方法。 然而,由于在
2020-09-04
-
徠卡顯微鏡,CARS顯微成像特點(diǎn)分子振動(dòng)對(duì)比
相干反斯托克斯拉曼散射(CARS)顯微鏡是一種技術(shù),分子的振動(dòng)簽名的基礎(chǔ)上生成圖像。這種成像方法不要求標(biāo)注的,但重要的生物分子的化合物的范圍內(nèi),可以得到分子的特定信息。本文簡(jiǎn)要地強(qiáng)調(diào)汽車的功能,并討論了一些令人興奮的成像引入這種新的成像方法的可能性。 探測(cè)分子的振動(dòng)分子的化學(xué)鍵能撼動(dòng),彎曲和撥浪鼓。他們做這些運(yùn)動(dòng)特別是利率或頻率。這些頻率是如此特別,我們可以找出什么樣的化學(xué)鍵是劍拔***張到其特
2020-09-04
-
尼康顯微鏡告訴你,什么是偏光顯微鏡?
偏振光是一個(gè)對(duì)比度增強(qiáng)技術(shù),提高得到的雙折射材料,當(dāng)相對(duì)于其他技術(shù),如暗視野,明視野照明,微分干涉對(duì)比,相襯,霍夫曼調(diào)制對(duì)比度,和熒光的圖像的質(zhì)量。 偏光顯微鏡有高度的敏感性,并可以用于定性和定量的研究,針對(duì)廣泛的各向異性標(biāo)本。 定性偏光顯微鏡是非常流行的做法,與眾多卷專門討論這個(gè)問題。 與此相反,偏光顯微鏡,它在結(jié)晶學(xué)中,主要采用的數(shù)量方面代表地質(zhì)學(xué)家,礦物學(xué)家和化學(xué)家通常限制為一個(gè)更加困難的
2020-09-04
-
奧林巴斯顯微鏡成像,量子效率
一個(gè)電荷耦合器件(CCD)的量子效率的光電響應(yīng)創(chuàng)建和成功地讀出由設(shè)備的每個(gè)入射光子的電子 - 空穴對(duì)的數(shù)目定義為一個(gè)屬性。 此屬性是特別重要的應(yīng)用,如熒光顯微鏡發(fā)射光子的波長(zhǎng)在375-550納米范圍內(nèi),往往是具有相對(duì)高的硅的吸收系數(shù)低光成像。 標(biāo)準(zhǔn)的CCD,通過在柵電極和氧化物覆蓋在設(shè)備前面的,它們被照亮的,更敏感的綠色和紅色的波長(zhǎng)550和900納米之間的區(qū)域中。的CCD的光譜靈敏度不同的一個(gè)簡(jiǎn)
2020-09-04
-
尼康顯微鏡的熒光原位雜交技術(shù)
?近四分之一個(gè)世紀(jì)以來已通過引入原位雜交的方法檢測(cè)和研究染色體和細(xì)胞的DNA序列在文獻(xiàn)中出現(xiàn)的第一個(gè)研究文章。?然而,在過去的15年里,發(fā)生了一場(chǎng)革命,光鏡下通過熒光技術(shù)的發(fā)展,允許前所未有的輕松,精密,準(zhǔn)確定位,識(shí)別和生物醫(yī)學(xué)樣品的基因構(gòu)成數(shù)據(jù)記錄。通過同時(shí)使用多個(gè)熒光色原位雜交的力量得以極大地延長(zhǎng)。?多色熒光原位雜交(FISH),在其最簡(jiǎn)單的形式中,可以用于識(shí)別盡可能多的雜交中使用的不同的熒光
2020-09-04