-
奧林巴斯顯微鏡:熒光和相襯的組合
光漂白的影響減到最小,熒光顯微鏡可以不破壞與其他技術(shù)相結(jié)合的熒光染料,如微分干涉相差(DIC),霍夫曼調(diào)制對(duì)比度(HMC),傳送暗場(chǎng)照明,相位相反的。我們的想法是找到一個(gè)感興趣的具體領(lǐng)域使用非破壞性的對(duì)比度增強(qiáng)技術(shù),然后在一個(gè)標(biāo)本,沒有搬遷的標(biāo)本,在顯微鏡切換熒光模式。這種類型的一個(gè)典型的實(shí)驗(yàn)的結(jié)果示于圖1。圖1(a)示出了使用相位對(duì)比光學(xué)成像的3T3成纖維細(xì)胞的單層組織培養(yǎng)。細(xì)胞行成立由美國(guó)國(guó)立
2020-09-04
-
奧林巴斯顯微鏡:什么是掃描近場(chǎng)光學(xué)顯微鏡(SNOM)
在衍射極限的光學(xué)顯微鏡的一個(gè)基本原則要求的空間分辨率的圖像的入射光的波長(zhǎng),并通過聚光鏡和物鏡系統(tǒng)的數(shù)值孔徑是有限的。發(fā)展近場(chǎng)掃描光學(xué)顯微鏡(NSOM),也經(jīng)常被稱為掃描近場(chǎng)光學(xué)顯微鏡(SNOM),一直需要一種成像技術(shù),實(shí)現(xiàn)空間的同時(shí),保留了光學(xué)顯微鏡的方法所帶來(lái)的各種對(duì)比機(jī)制驅(qū)動(dòng)超越了經(jīng)典的光學(xué)衍射極限的分辨率。掃描近場(chǎng)光學(xué)顯微鏡分類之間更廣泛的器樂組統(tǒng)稱為掃描探針顯微鏡(SPMS)。所有的SPM
2020-09-04
-
徠卡顯微鏡:多波長(zhǎng)在熒光顯微鏡落射照明
熒光是一個(gè)過程,其中已吸收的光(光子)后的物質(zhì)emitts的輻射的波長(zhǎng)(顏色),其中長(zhǎng)于吸收光,這個(gè)排放停止后立即停止激發(fā)。這種現(xiàn)象是熒光顯微鏡及其應(yīng)用的基本元素。除此之外,“古典”在光學(xué)顯微鏡下的熒光激發(fā),有可能兩個(gè)或多個(gè)光子具有較長(zhǎng)wavengths比發(fā)射的激發(fā)激光共聚焦掃描顯微鏡通過現(xiàn)代技術(shù)來(lái)獲得相同的發(fā)光效果。 熒光作為autofluorescenc的生物和/或無(wú)機(jī)結(jié)構(gòu)或所謂的次級(jí)熒
2020-09-04
-
尼康顯微鏡:折光指數(shù)
折光指數(shù)(折射率)計(jì)算出的值從光在真空中的速度的比率,在第二介質(zhì)的密度更大。折射率變量是最常見的由字母N或描述性的文字和數(shù)學(xué)方程N(yùn)'象征。如在圖中所示的平面表面分離兩種介質(zhì)的波前入射到折射進(jìn)入第二介質(zhì)時(shí),如果入射波的表面是傾斜的。入射角(θ(1)?)有關(guān)的折射角(θ(2)?)稱為斯涅耳定律的簡(jiǎn)單的關(guān)系:N???1?×sin(θ?)=N?2?×sin(θ?2)N表示材料1和材料2的折射率,θ是角度
2020-09-04
-
徠卡顯微鏡:熒光簡(jiǎn)介
熒光是由喬治·加布里埃爾·斯托克斯在1852年首次被發(fā)現(xiàn)。他指出,螢石開始發(fā)光后,用紫外光照射。熒光是一種形式的,它描述了由輻射產(chǎn)生的光子的材料被光照射后的光致發(fā)光。所發(fā)射的光具有比激發(fā)光的波長(zhǎng)較長(zhǎng)的。這種效應(yīng)被稱為斯托克斯位移(Stokes shift)。 作為一種工具,熒光顯微鏡被廣泛用于熒光顯微鏡觀察特定的分子的分布的一個(gè)重要工具。大多數(shù)細(xì)胞中的分子不發(fā)出熒光。因此,他們被稱為熒光染料的熒
2020-09-04
-
尼康顯微鏡:共聚焦成像模式
共聚焦顯微鏡的主要應(yīng)用是在厚的部分的各種各樣的標(biāo)本類型的改進(jìn)的成像。共焦的方法的結(jié)果的能力,通過試樣序列在高分辨率圖像的各個(gè)光學(xué)部分的優(yōu)點(diǎn)。一些使用不同的成像方式,全部依靠的光學(xué)部分,其基本形象單位。單光學(xué)部分光學(xué)部分是圖像的基本單位,在激光共聚焦顯微鏡方法。數(shù)據(jù)可以收集固定和染色標(biāo)本的單,雙,三,或多個(gè)波長(zhǎng)的照明模式,并從多個(gè)標(biāo)記的標(biāo)本采集的圖像將在注冊(cè)與對(duì)方(如果有足夠的校正色差物鏡像差被使用
2020-09-04
-
徠卡顯微鏡:熒光蛋白 - 從入門到諾貝爾獎(jiǎng)
熒光蛋白是最近熒光顯微鏡及其現(xiàn)代應(yīng)用的根本。他們的發(fā)現(xiàn)和隨后的發(fā)展是最令人興奮的創(chuàng)新在上個(gè)世紀(jì)的生命科學(xué)和無(wú)數(shù)自然現(xiàn)象破譯的起點(diǎn)之一。這篇文章是獻(xiàn)給誰(shuí)參與了熒光蛋白的命運(yùn)輸入其科學(xué)的參與到人。它應(yīng)該給一個(gè)最美麗的生化工具,從一開始到諾貝爾獎(jiǎng)的漫長(zhǎng)道路的洞察。?????早期的熒光觀察熒光蛋白的人的興趣可以追溯到公元一世紀(jì)時(shí),羅馬自然哲學(xué)家老普林尼描述[?1?](蓋烏斯皮林紐斯Secundus,公元2
2020-09-04
-
尼康顯微鏡:活細(xì)胞顯微漂移校正焦點(diǎn)
直到20世紀(jì)80年代末,大多數(shù)生命科學(xué)的研究生物的結(jié)構(gòu)復(fù)雜的細(xì)節(jié),捕捉各種使用固定和染色標(biāo)本(實(shí)際上,非生物)的細(xì)胞學(xué)特征的單一快照。然而,在過去的幾十年中,在生物科學(xué)和醫(yī)學(xué)的研究已經(jīng)在很大程度上轉(zhuǎn)移了重點(diǎn)調(diào)查浩大的時(shí)間尺度上,從幾毫秒到幾小時(shí)不等的生命系統(tǒng)的分子,細(xì)胞和整個(gè)生物體水平上發(fā)生的動(dòng)態(tài)過程。過渡到活細(xì)胞成像的司機(jī)已經(jīng)先進(jìn)的顯微儀器和更敏感的數(shù)碼相機(jī)的發(fā)展,以及新的合成和基因編碼的熒光基
2020-09-04